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Abstract
The atomic structure of the perfect AlPdMn icosahedral phase has been studied
on a single-crystal specimen using the quantitative convergent beam electron
diffraction (QCBED) technique combined with a description of the shapes of
atomic surfaces using a symmetry-adapted series of surface harmonics. The
spherical model (Boudard et al 1992 J. Phys.: Condens. Matter 4 10149) was
used as a starting point for the refinement. By fitting the calculated electron
diffraction intensities in the CBED line profile to the experimental electron
diffraction intensities, the coefficients in the surface harmonic expansion of
the atomic surfaces’ boundaries are refined. The refined parameters show that
the fluctuations of the external boundary of atomic surface for Pd at n0 can
be as large as 0.2 nm. The boundaries of the atomic surfaces for Mn show
little fluctuation. Compared to the spherical model, in the present model the
number of unphysically short interatomic distances is reduced significantly.
The three-dimensional atomic clusters with centres located successively at the
six-dimensional lattice nodes n0, n1 and bc1 are generated by means of the cut
method.

1. Introduction

Quasicrystals represent a form of matter that differs from the other two forms—crystalline
and amorphous—by possessing quasiperiodic translational order and non-crystallographic
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orientational order. The atomic structure of quasicrystals is now mostly understood through
high-dimensional crystallography. In this scheme the periodicity is recovered in a six-
dimensional (6D) space for structures that present icosahedral symmetry. The periodic space
decomposes into two subspaces: the parallel space (physical space) and the perpendicular
space. In the cut scheme, the atomic structure is described by a set of atomic surfaces (atomic
hypersurfaces or atomic occupation domains) which extend in the perpendicular space and
decorate the higher-dimensional unit cell. For the case of icosahedral phases, the atomic
surfaces are three-dimensional objects. To solve the structure of a quasicrystal, one must
determine both the positions and the shapes of the atomic surfaces.

Boudard et al [1] proposed a spherical model to describe the atomic structure of icosahedral
AlPdMn quasicrystals based on their neutron and x-ray single-crystal studies. In this model,
the icosahedral AlPdMn phase has a face-centred hypercubic lattice and the atomic surfaces
are either spheres or spherical shells. The atomic surfaces are located on three special positions
of the hypercubic unit cell: (i) three successive shells located on n0 = [000000]—the spherical
core of Mn, an intermediate shell of Pd and an outer shell of Al; (ii) two successive shells
located on n1 = 1

2 [100000]—the core of Mn and an outer shell of Al; and (iii) a ball of Pd
located on bc1 = 1

4 [111111̄]. Although the shapes of the atomic surfaces are simple, this
model produces quite well the x-ray diffraction intensities of the strongest reflections which
correspond to the reflections with small perpendicular components, gperp, of the 6D reciprocal
vectors. This is because, in the low-gperp region, the Fourier transform of the atomic surfaces
is mainly sensitive to their sizes and not their precise shapes. Later, de Boissieu et al [2] found,
according to their anomalous x-ray diffraction study, that the geometrical irregularity of the
atomic surface that describes the Pd atoms is of the order of 0.1 nm. To refine the atomic
structure of icosahedral quasicrystal Al57Li32Cu11, Elcoro et al [3, 4] used symmetry-adapted
surface harmonics to describe the boundaries of atomic surfaces in perpendicular space and
performed the refinement on neutron and x-ray diffraction data.

The shapes of atomic surfaces are directly related to the local arrangement of atoms.
The magnitude and phase of a structure factor also depend on the arrangement of the atoms.
In electron diffraction, the dynamical effect is very strong and the intensities of diffraction
beams can be calculated precisely using the dynamical theory of electron diffraction. Thus,
the quantitative convergent beam electron diffraction (QCBED) technique can be employed
to determine the structure factors of crystals to an accuracy of 0.1% in magnitude and 0.1◦
in phase [5]. Such a feature can be helpful in determining the shapes of atomic surfaces. In
addition, convergent beam electron diffraction (CBED) can provide information from a perfect
micro-area as small as 1 nm in diameter, so that the influence of defects in quasicrystals is
minimized. The purpose of this paper is to get more information about the shapes of the atomic
surfaces of icosahedral AlPdMn quasicrystals by means of the QCBED technique combined
with the surface harmonic description of the shape of the atomic surface.

2. Experimental details

Large single-quasicrystal samples of Al70.5Pd21Mn8.5 were kindly provided by Professor
K Urban of the Institute for Solid State Research, Research Center Juelich GmbH, Germany.
These single quasicrystals were grown by using the Czochralski method. The specimen
for transmission electron microscopy observation was prepared by the standard method,
mechanical thinning and finally ion milling. The CBED experiments were performed using
a Philips CM200-FEG microscope equipped with a Gatan image filter (GIF) and a Gatan
1024 × 1024 pixel slow-scan CCD camera in the Beijing Laboratory of Electron Microscopy.
During the experiments, the Gatan double-tilt specimen holder was cooled with liquid nitrogen.
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The temperature in the specimen was lower than −150 ◦C. An energy window of 10 eV around
the zero-loss energy was elected. To avoid the influence of defects and obtain structural
information from a region as perfect as possible, a nominal size of electron probe (1.2 nm)
was used. This choice was also made on the basis of the following facts. First, since
the thickness of a specimen for transmission electron microscopy is about 100 nm, a large
number of atoms—which the incident electrons meet on their way through the specimen—
scatter the electrons coherently. Second, among the spacings corresponding to 329 reflections
in the x-ray diffraction of a single quasicrystal [2], the largest plane spacing is 0.889 nm
(2π/d = 7.07 nm−1). The probe size of 1.2 nm is larger than all the spacings corresponding
to those reflections with measurable intensities. Third, for case of the coherent electron beam,
if the probe size is less than the lattice plane spacing, then the CBED pattern depends on the
probe position [8]. When we took one CBED pattern after another at the ‘same’ point and with
the same experiment conditions, the location of the electron probe was actually different due
to the drift of the specimen. However, no difference was observed from such CBED patterns.
This indicates that the size of the electron probe is larger than the spacings of the planes that
can give significant reflections. The accelerating voltage was 195.35 kV, which was obtained
by fitting the dynamically simulated CBED pattern to the experimental pattern taken from a
single-crystal specimen of silicon.

3. Structure refinement

3.1. Calculation of diffraction intensities for icosahedral AlPdMn quasicrystals

Since the diffraction peaks of quasicrystals are densely distributed in diffraction space, an
overlap of diffraction disks is unavoidable for quasicrystals. However, as has been proved
by Tanaka et al [6], if the electron beam is focused onto the specimen, the intensity at
the overlapping region becomes uniform and equals the sum of the intensities of the two
overlapping disks plus a constant term. Also, this constant term becomes zero when the beam
size is larger than the lattice spacing. In the present simulation, the positions of disks are
calculated and the intensities for individual disks at the overlapping region are summed.

The wave-mechanical formulation of electron diffraction dynamical theory for classical
crystals can be applied to quasicrystals [7], provided that Vg , the Fourier components of the
potential V (r), are defined as

Vg = [h2/(2me)]Ug = [h2/(2me)]S(gpar)/(πV ). (1)

Here S(gpar)/V is the scattering power per unit volume of the quasicrystal for gpar , the parallel
subspace component of the 6D reciprocal vector g. The problem is then reduced to solving
the standard dispersion equation for CBED [8]:

(2K Sg + iU ′
0)B( j)

g

1 + gpar
n /Kn

+
∑
h �=g

(Ug−h + iU ′
g−h)B( j)

h√
1 + gpar

n /Kn

√
1 + hpar

n /Kn

= 2Knγ
( j)B( j)

g (2)

and

B( j)
g = (1 + gpar

n /Kn)
1/2C ( j)

g . (3)

Here, gpar
n is the component of gpar along the normal of the specimen surface, Sg is the deviation

parameter of the gpar reflection, and K is the refraction-corrected wavevector. The anomalous
absorption has been considered by introducing the imaginary part U ′

g to the potential in
equation (2). For the case that there is no inversion centre, both Ug and U ′

g are complex.

The solution of equation (2) then gives the generally complex γ ( j) and C ( j)
g . Finally, the

intensity for a given incident beam direction can be calculated as usual:
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Ig(K) =
∣∣∣∣
∑

i

C−1(i)

0 C (i)
g exp(2π iγ (i)t)

∣∣∣∣
2

. (4)

In equation (4), t is the thickness of the specimen and C−1(i)

0 is the i th element in the column,
corresponding to the transmitted beam, of the inverse of the matrix whose elements are C (i)

g
(rows i , columns g).

In calculating the structure factor for quasicrystals, the summation over points in the unit
cell, as in the case of the classic crystal, must be replaced by integration over the atomic
surfaces followed by a summation over these surfaces in the superspace unit cell. Therefore,
the structure factor can be expressed as [9]

FG =
m∑

j=1

Tj(g
par, gperp) f j (gpar)q j(g

perp) exp(2π iG · R j), (5)

where Tj (g) is the temperature factor. It is assumed here that a single thermal tensor B j

is associated with all the atoms represented by the points in one atomic surface and thus
independent from rperp. Here, rpar and rperp are components of the 6D vector R in the parallel
and perpendicular subspaces, respectively. For the icosahedral AlPdMn quasicrystal, the
locations of the atomic surfaces, n0, n1 and bc1, are special points with the site symmetry
5̄3̄m. The thermal tensor B j can be considered to be approximately isotropic. Hence, the
temperature factor is expressed as

Tj (g
par, gperp) = exp

{− 1
4 (Bpar

j gpar2
+ Bperp

j gperp2
)
}
. (6)

In equation (5), f j (g) is the atomic scattering factor of the j th atom in the superspace unit
cell. The geometrical form factor can be written as

q j(g
perp) = (1/�perp)

∫
A j

exp(2π igperp · rperp) drperp. (7)

Here, �perp and �par are the volumes of the 6D unit cell in the perpendicular and parallel
subspaces, respectively, and A j denotes the j th atomic surface. The structure factor represents
the scattering power of the quasicrystal within �par. Hence, we have

S(g)/V = Fg/�par = πUg. (8)

It is seen from the previous equations that the diffraction intensity depends on the shapes of
the atomic surfaces, as shown in the integration of equation (7).

3.2. Continuous parameterization of the shape of the atomic surface

The approach of Elcoro et al [3, 4], in which the shape of the atomic surface is described
by surface harmonic expansion, offers an easy way to describe the shape of the atomic
surface with continuous parameters and to subsequently refine the parameters. According
to Elcoro et al [3, 4], the radial functions r ex(θ, φ) and r in(θ, φ), which define the external and
internal boundaries of the atomic surface, can be described in terms of linear combinations of
ortho-normalized surface harmonics, Zl(θ, φ), which are invariant for the atomic surface site
symmetry. The functions Zl(θ, φ) are chosen within the subspace generated by the spherical
harmonics Y m

l (θ, φ) with a fixed index l. Thus

r(θ, φ) =
∑

l

al Zl(θ, φ) =
∑

l

al

( l∑
m=−l

zlm Y m
l (θ, φ)

)
. (9)

The coefficients zlm are determined by the site symmetry of the atomic surface and the
normalization condition of the functions Zl(θ, φ). The superspace group F 5̄3̄m is normally
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assumed for the icosahedral AlPdMn phase. The point symmetries in the parallel and
perpendicular spaces are both 5̄3̄m. The 6D face-centred hypercubic (FCC) direct lattice
can be considered as resulting from the ordering on the primitive lattice with the 6D lattice
constant aP = aF/2. The sites n0, n1 and bc1 of the spherical model are either at the vertex or
at the body centre. The site symmetries of n0, n1 and bc1 are all 5̄3̄m. For this site symmetry,
al can have non-zero values only for l = 0, 6, 10, 12, 16 when l is less than or equal to 16.
Then r(θ, φ) can be expressed as

r(θ, φ) = a0Y 0
0 (θ, φ) + a6

{√
11

5
Y 0

6 (θ, φ) +

√
7

5
[Y 5

6 (θ, φ) + Y −5
6 (θ, φ)]

}
+ a10{· · ·} + · · · .

(10)

The first term, a0Y 0
0 (θ, φ) = a0/(4π)1/2, represents a spherical surface with a radius of

a0/(4π)1/2. To reduce the number of adjustable parameters, and also to save computing time,
only the first two coefficients for each boundary, a0 and a6, were refined.

3.3. Refinement

We used the QCBED systematic row method [5]. The best fit of the calculated intensity curve
to the experimental curve is reached by using the simplex algorithm of optimization. The
object function is defined as

χ2 = 1

n

∑
i, j

1

σ 2
i j

(I exp
i, j − cI calc

i, j )2 + wc

∑
m(cexp

m − ccalc
m )2∑

m(cexp
m )2

+ wρ

(ρexp − ρcalc)2

(ρexp)2
+ 	. (11)

Here, i , j are the sequential number of scanned lines and the sequential number of data points
in each lines, respectively, n is the total number of data points, I represents the intensity,
the superscripts exp and calc stand for experimental and calculated data, respectively, c is a
scaling constant, cm is the relative atomic composition of the mth atom, ρ is the mass density,
wc and wρ are the weight parameters for controlling the strength of the restraints with respect
to atomic composition and mass density, respectively, and σ 2

i is the variance of the i th intensity
and equals I exp, assuming Poisson statistics. Another term, 	, is included in the object function
to minimize the number of unphysically short interatomic distances. The distances between
any two atoms are calculated in each refinement cycle by using the cut method. When the
calculated interatomic distance is smaller than the sum of the radii of the two atoms, 	 takes
a non-zero positive value. The shorter the distance, the larger the value of 	. The adjustable
parameters include the parameters al that describe the shapes of atomic surfaces, thermal
parameters B , the beam direction, and the thickness of the specimen.

In the refinement, the 200 beams that were included in the calculations of the diffraction
intensities were selected by using the perturbation strength criterion |Uh/2K Sh |min [10]. Each
digit of the index of a 6D reciprocal vector (n1 n2 n3 n4 n5 n6) took a value from −20 to 20 in
turn, to avoid missing any significant beams. Among the 200 beams, about 50 strong beams
were included in the diagonalization of equation (2) and the effects of the remainder were
included by introducing the effective Bethe potential [8]. The beams, which correspond to the
diffraction lines appearing in the CBED pattern, were among the 50 beams. The additional
beams were selected from the 200 beams by using the criteria of Birkeland et al [11]. For any
beam g in the set of strong beams which are to be diagonalized, if beam h satisfies

	Ug[h] = Ug−hUh/2K ShUg � Bmax, (12)

then the beam h must belong to the strong beam set. For any beam g′ whose diffraction line
appears in the transmitted disk of the CBED pattern, if beam h satisfies 	Ug′[h] � Pmax then
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Table 1. A comparison of the main features of the atomic surfaces from the best fit of the CBED
pattern to the spherical model of Boudard et al [1]. Here, aF is the edge length of the 6D face-centred
cubic lattice unit cell in direct space; a0 and a6 are the coefficients in (9) and (10).

Best fit of the CBED pattern
Spherical model [1]

Site Boundary Radius a0/
√

4π a6/
√

4π

n0 B1 0.415aF 0.418aF 0.007 07aF

n0 B2 0.63aF 0.624aF 0.075 1aF

n0 B3 0.775aF 0.797aF 0.017 9aF

n1 B4 0.26aF 0.268aF −0.017 9aF

n1 B5 0.82aF 0.794aF −0.089 4aF

bc1 B6 0.355aF 0.368aF 0.008 67aF

the beam h also belongs to the set of beams that are to be diagonalized. The values of the
constants Bmax and Pmax are adjusted to keep the number of beams to be diagonalized to about
50, and Pmax takes a value of 10% of Bmax.

The spherical model of Boudard et al [1] is used as the starting point for the refinement.
In the present refinement, the boundaries of the atomic surfaces are described by the surface
harmonics of equation (10). Thus, the initial value of a0 in equation (10) takes the value of

√
4π

times the radius of the corresponding sphere in the spherical model [1], and the initial values of
a6, a10, . . . in equation (10) take the value zero. It is assumed that, for two adjacent shells, the
external boundary of the inner shell is exactly the internal boundary of the outer shell, which is
similar to the spherical model [1]. The chemical order of the spherical model of Boudard et al
[1] was determined using neutron diffraction and anomalous x-ray diffraction. This chemical
order is used in the present refinement. The Al70.5Pd21Mn8.5 icosahedral phase has a face-
centred hypercubic lattice with a lattice constant of aF = 1.2902 nm in the six-dimensional
direct space. The radii of the spherical boundaries of the atomic surfaces in this model are
listed in table 1. The experimental mass density used in the refinement is 5.18 g cm−3.

The coordinate system proposed by Cahn et al [12] is used in this paper. The corresponding
six-dimensional rotation matrix used is then

1√
2(2 + τ )




1 τ 0 −1 τ 0
τ 0 1 τ 0 −1
0 1 τ 0 −1 τ

−τ 1 0 τ 1 0
1 0 −τ 1 0 τ

0 −τ 1 0 τ 1




. (13)

4. Results and discussion

Figure 1 shows the transmitted disk of the CBED pattern. The diffraction lines are indexed by
matching the experimental pattern to a computer-simulated diffraction line pattern on the basis
of kinematic theory. Figure 2(a) shows the experimental energy filtered CBED pattern in the
(6̄2̄2̄4̄2̄4) systematic reflection condition. The data scanned along lines 3 and 5 were used in
the refinement. Figure 2(b) shows the line profile of line scan 3, the calculated intensities, and
the differences between the calculated and experimental intensities. The structure parameters
obtained from the best fit of the calculated to the experimental line profile are listed in table 1
to compare these parameters with those of the spherical model. The boundaries that define the
atomic surfaces are shown in figure 3. The central sections of the atomic surfaces in the Y –Z
plane through n0, n1, bc1 points, respectively, are shown in figure 4.
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Figure 1. Diffraction lines in the transmitted disk of the CBED pattern and the indexes for each
diffraction lines. The values in the parentheses following the indexes are the intensities of the
diffraction beams calculated in kinematic approximation.

Figure 2. (a) The experimental CBED pattern in the (6̄2̄2̄4̄2̄4) systematic reflection condition.
(b) The experimental line profile and the best fits for line scan 3. The differences between the
calculated and experimental intensities are shown by the dotted curve.
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Figure 3. The boundaries obtained for the atomic surfaces of the AlPdMn icosahedral phase.

Figure 4. The central sections of the atomic surfaces at n0, n1 and bc1 on the Y –Z plane.
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Table 2. Statistics on unphysically short interatomic distances in the present model. The parameter
r is the ratio of the calculated interatomic distance di j (from atom i to its neighbour j) to the sum
of the radii of the two atoms, ri +r j , i.e. r = di j /(ri +r j ). Here, the metallic radii, rAl = 0.142 nm,
rPd = 0.137 nm and rMn = 0.136 nm were used.

Percentage of atoms whose r lies in
the range in the first column (%)

r Present model Spherical model

�1.0 2.06 0.266
1.0–0.9 93.5 92.6
0.9–0.8 0.00 0.00
0.8–0.7 0.00 0.00
0.7–0.6 3.93 4.67
0.6–0.5 0.00 0.00
0.5–0.4 0.00 0.00
0.4–0.3 0.525 2.49
0.3–0 0.00 0.00

It is seen from table 1 and figures 3 and 4 that the irregularity of the atomic surface at
n0 for Pd obtained from fitting CBED is in agreement qualitatively with the prediction from
anomalous x-ray scattering studies [2]. Nevertheless, the geometric fluctuation of about 0.2 nm
around the sphere is slightly larger than the value of 0.12 nm [2]. The shapes of the atomic
surfaces at n0 and n1 for Al are also changed significantly from the sphere. However, the
shapes of the atomic surfaces for Mn are mainly spherical, with very little fluctuation, and the
sizes of the spheres are nearly the same as those of Boudard’s spherical model [1].

We calculated the interatomic distances for the atoms within a 7 nm × 7 nm × 7 nm box
and used some simple statistics. The total number of atoms is 23 258, which includes 16 077
Al atoms, 5151 Pd atoms and 2030 Mn atoms. The calculated mass density is 5.15 g cm−3.
The main results are shown in table 2. The parameter r is defined as the ratio of the calculated
interatomic distance di j (from atom i to its neighbour j ) to the sum of the radii of the two
atoms, ri + r j , i.e. r = di j/(ri + r j). The metallic radii rAl = 0.142 nm, rPd = 0.137 nm,
and rMn = 0.136 nm from [13] were used here. It is seen that the percentage of atoms that
have unphysically short interatomic distance to their neighbours is reduced by using surface
harmonics in describing the shape of the atomic surface and by adding the term 	 to the object
function in the refinement of the QCBED technique.

Table 3 lists the thermal parameter components Bpar obtained from fitting the calculated
line profile to the experimental line profile. It is seen that, due to the fact that the CBED
experiments were performed at lower temperature, the values of the thermal parameter Bpar

obtained in the present refinement are smaller than those in [2]. It is also seen that the value of
Bpar for Al is larger than those for Mn and Pd, which implies that the amplitude of the thermal
vibration of Al atoms in the quasicrystal is larger than those of the other two types of atoms.

Using the parameters obtained for the atomic surface boundaries, the three-dimensional
structure of the AlPdMn icosahedral phase is generated by using the cut method. The origin
of the superspace is located successively at the six-dimensional lattice nodes n0, n1 and bc1.
Figures 5 and 6 show the shells of the cluster whose centre corresponds to the six-dimensional
lattice nodes n0 and n1, respectively. The number of atoms, the radius r of polyhedron, and the
ratio of r to a3D, where a3D = aP/

√
2 = 0.4561 nm, for each shell are listed in table 4. The

type of shell and the ratio r/a3D of the extended Mackay cluster (proposed by Duneau [14]) are
also listed in table 4. It is seen that, for the cluster with a centre corresponding to n0, the first six
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Table 3. Column 5 lists the values of the thermal parameter component Bpar, as defined in
equation (5), that were obtained by fitting the CBED pattern. The CBED experiment was performed
with a liquid nitrogen cooled specimen holder. For comparison, the values of Bpar and Bperp given
in [1, 2] are also listed in the table. It is noted that the parameters Bpar and Bperp in [1, 2] are
defined with exp{−(Bpar Q2

par + Bperp Q2
perp)} and Qpar = 2π/dpar , where dpar is the spacing of the

atomic plane. The values of Bpar and Bperp shown in this table are (4π)2 times 0.000 044 nm2 and
0.007 nm2 [2], respectively.

The best fit of
Spherical model [1] CBED pattern

Site Atom Bpar (nm2) Bperp (nm2) Bpar (nm2)

n0 Mn (within B1) 0.0069 1.1 0.000 469
n0 Pd (between B1 and B2) 0.0069 1.1 0.000 499
n0 Al (between B2 and B3) 0.0069 1.1 0.001 45
n1 Mn (within B4) 0.0069 1.1 0.000 566
n1 Al (between B4 and B5) 0.0069 1.1 0.001 20
bc1 Pd (within B6) 0.0069 1.1 0.000 434

shells, including one Mn atom located at the centre, are coincident with the extended Mackay
cluster with respect to the type of polyhedron and the ratio of r to a3D. Nevertheless, the vertices
in the present model are all occupied either by Al atoms or by Mn atoms (icosidodecahedron
with r/a3D = 1.701), and the icosahedral symmetry of the cluster is maintained. For the
cluster with a centre corresponding to n1, the 12 Mn atoms (icosahedron), the 30 Al atoms
(icosidodecahedron), the 60 Al atoms (rhombicosidodecahedron) and the larger 30 Al atoms
(icosidodecahedron) are also in the shell series of the extended Mackay cluster. However, the
dodecahedron with r/a3D = 0.563 in the shell series of the extended Mackay cluster does not
appear in the shell series of a cluster with a centre located at n1, shown in figure 6. It is noted
that the 12 Pd icosahedron with r/a3D = 1.618 in the cluster with a centre at n0 belongs to the
shell series of the extended Bergman cluster [14] rather than the shell series of the extended
Mackay cluster. The 20 Pd dodecahedron with r/a3D = 1.473 in the cluster with a centre at
n1 also belongs to the shell series of the extended Bergman cluster.

The shells of the cluster with a centre corresponding to the six-dimensional lattice node
bc1 are shown in figure 7. The features of the shells are listed in table 5. It is seen that the
first four shells belong to the shell series of the extended Bergman cluster [14]. However, two
incomplete truncated icosahedrons with an r/a3D of 1.220 and 1.391 do not appear in the shells
shown in figure 7.

In the pseudo-Mackay icosahedron model of Boudard et al [1] the cluster contains 51
atoms. The internal shell is a body-centred cubic of nine Al atoms, and the cubic can
be considered to be part of a dodecahedron. The second shell is a icosahedron occupied
by Mn atoms plus a small number of Al or Pd atoms, and the external icosidodecahedron
is made of Al atoms alone or of Al plus Pd atoms, depending on which node, n0 or n1,
the centre of the cluster is sited. According to electronic structure calculations [15], this
clustered structure corresponds to a stable low-energy state. Recently, a number of theoretical
investigations [14, 16, 17] showed that the Bergman clusters are the basic dominant elements
for the icosahedral AlPdMn (i-AlPdMn) phase. The discrepancy is noted between the present
result and the existing models of theoretical and experimental investigations. To increase the
reliability of the structure refinement using QCBED, work is in progress to investigate using
different algorithms of optimization, as well as to investigate refining simultaneously several
CBED patterns, in each of which one or more specified strong reflections are excited.
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Figure 5. Shells of the cluster with a centre located at the six-dimensional lattice node n0. The
light grey balls with the largest size represent Al atoms, the small black balls represent Pd, and the
darker balls with intermediate size represent Mn.

5. Summary

In this paper the QCBED technique is used in the refinement of the atomic structure of
icosahedral AlPdMn quasicrystals by fitting the experimental line scan profile to calculated
intensities by means of the dynamic theory of electron diffraction. The shapes of the atomic
surfaces’ boundaries are described using a truncated series of surface harmonics, and the
coefficients in the surface harmonic expansion are refined, together with the thermal parameters,
thickness of the sample etc. The refined parameters, which describe the shapes of the atomic
surfaces’ boundaries, show that the fluctuation in the external boundary of the atomic surface
for Pd at the site n0 can be as large as 0.2 nm. The fluctuations in the internal boundary at n0

and the external boundary at n1 of the atomic surfaces for Al are also significant. The shapes
of the atomic surfaces for Mn remain essentially spherical. Compared to the spherical model,
the percentage of unphysically short interatomic distances is reduced. The thermal parameter
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Figure 6. Shells of the cluster with a centre located at the six-dimensional lattice node n1. The
light grey balls with the largest size represent Al atoms, the small black balls represent Pd, and the
darker balls with intermediate size represent Mn.

Table 4. The first four columns and the second four columns list the number of atoms, radius and
the ratio r/a3D for each shell of the cluster corresponding to the six-dimensional lattice nodes n0
and n1, respectively. The type of shell and the ratio r/a3D of the extended Mackay cluster [14] are
listed in the 9th and 10th columns.

Cluster with centre Cluster with centre Extended
corresponding to n0 corresponding to n1 MC [14]

No of Radius No of Radius
Figure atoms r (nm) r/a3D Figure atoms r (nm) r/a3D Shell r/a3D

1 Mn 0 0 1 Mn 0 0 1 0
5(a) 20 Al 0.2567 0.563 20 0.563
5(b) 12 Al 0.4561 1 6(a) 12 Mn 0.4561 1 12 1
5(c) 30 Al 0.4796 1.051 30 Al 0.4796 1.051 30 1.051
5(d) 60 Al 0.6619 1.451 6(b) 60 Al 0.6619 1.451 60 1.451

20 Pd 0.6721 1.473
5(e) 12 Pd 0.7381 1.618

30 Mn 0.7761 1.701 6(c) 30 Al 0.7761 1.701 30 1.701
5(f) 60 Al 0.9002 1.974 6(d) 60 Pd 0.9002 1.974

60 Al 0.9123 2.000 60 Al 0.9123 2.000
12 Pd 0.9123 2.000

5(g) 60 Al 1.0200 2.236 6(e) 12 Pd 1.0200 2.236
5(h) 20 Mn 1.0875 2.384 20 Mn 1.0875 2.384

60 Pd 1.0975 2.406 60 Al 1.0975 2.406

components Bpar obtained at low temperature show that the thermal parameters of Al are much
larger than the parameters of Pd and Mn. Using the cut method, clusters are obtained with a
centre sited successively at the six-dimensional lattice nodes n0, n1 and bc1. The clusters with
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Figure 7. The shells of the cluster with a centre located at the six-dimensional lattice node bc1.
The light grey balls with the largest size represent Al atoms, the small black balls represent Pd, and
the darker balls with intermediate size represent Mn.

Table 5. The first four columns list the number of atoms, radius and the ratio r/a3D for each shell
of the cluster corresponding to the six-dimensional lattice node bc1. The type of shell and the ratio
r/a3D of the extended Bergman cluster [14] are listed in the 5th and 6th column.

Cluster with centre corresponding to bc1 Extended Bergman cluster [14]

Figure No of atoms Radius r (nm) r/a3D Shell r/a3D

1 Mn 0 0
7(a) 12 Al 0.2819 0.618 12 0.618
7(b) 20 Pd 0.4154 0.911 20 0.911

60 1.220
60 1.391

7(c) 20 Al 0.6721 1.473 20 1.473
7(d) 12 Mn 0.7381 1.618 12 1.618
7(e) 60 Al 0.8257 1.810

60 Pd 0.8802 1.930
7(f) 60 Al 1.0266 2.251

60 Pd 1.0710 2.348

a centre corresponding to the 6D lattice nodes n0 and n1 show predominantly the features of
the extended Mackay cluster, while the clusters with a centre corresponding to the 6D lattice
node bc1 show mainly the features of the extended Bergman cluster.
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